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Capillary rise: A prototypical (dynamic) wetting process

Free energy functional (including some approximations):

E(h) = πR2σ + 2πRhσw +
π

2
ρgR2h2.

σw: specific energy due to wetting of the solid

Young equation for the equilibrium contact angle

σ cos θ0 + σw = 0.

Energy minimization yields Jurin’s equation

h0 = − 2σw

ρgR
=

2σ cos θ0

ρgR

describing the stationary rise height.

3



Dynamics of capillary rise

There are different regimes for the rise dynamics observed in experiments.

(Quéré, Europhys. Lett., 1997):
Monotone rise for ethanol, oscillatory rise for ether (low viscosity).

Goal: Predict the dynamics from material parameters. This is (still) a challenging problem!

(a) Ethanol (η = 1.17mPa · s). (b) Ether (η = 0.3mPa · s).

Figure: Experimental data by Quéré (1997). Capillary rise in a glass tube (R = 0.689mm).
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A hierarchy of models for dynamic wetting

Molecular dynamics: Accurate description of the local physics. Limited to short length and time scales.

Continuum mechanics: Small scale physics ”encoded” in constitutive laws and boundary conditions.

Simplified models: Models derived from continuum mechanics using some simplifying approximations.
Here: Aim for ordinary differential equations.

(a) Molecular dynamics. (b) Continuum mechanics. (c) Simplified models.

Figure (c) taken from www.aps.org/publications/apsnews/200908/zerogravity.cfm.
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Direct Numerical Simulations

A numerical benchmark for dynamic wetting simulations

Gründing et al.: A comparative study of transient capillary rise using direct numerical simulations [Grü+20a]
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Direct Numerical Simulations

A numerical benchmark for dynamic wetting simulations

Observation: There is a lack of accurate reference solutions.

Goal: Establish a numerical benchmark for an instationary
dynamic wetting problem.

Mathematical model: Sharp interface two-phase Navier
Stokes equations with fixed contact angle and Navier slip
condition

−v‖ = 2L(Dn)‖ at ∂Ω.

We provide an extensive dataset [Grü+20b] validated with
four different numerical methods.
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Direct Numerical Simulations

Influence of the slip length

Finding: The slip length may change the character of the rise dynamics.
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Capillary Rise

The classical model by Bosanquet

Classical model due to Bosanquet (1923):

2πRσ cos θ0 = 8πηhḣ +
d

dt
(πR2hρḣ) + πR2hρg . (1)

”Capillary force = Viscous resistance + inertia + gravity”

Simplifying assumptions: Flat interface Σ (to compute M), Poiseuille
flow profile (with no slip condition).

Volume:V = πR2h, Mass:M = ρV ,

Momentum:P = Mḣ.

Only one dissipative process modeled:
Viscous dissipation in the Poiseuille flow region.

12



Capillary Rise

Non-dimensional form

Using the length and time scales

h0 =
2σ cos θ0

ρgR
and tref =

√
h0/g

in (1), one arrives at

1 = (HH ′)′ + ΩHH ′ + H. (2)

Here H(τ) = h(τ tref)/h0 is the dimensionless rise height. The dimensionless group

Ω =

√
128η2σ cos θ0

R5ρ3g 2
=
√

128 cos θ0
Oh

Bo

governs the behaviour of solutions of (2).

Quéré showed that a regime transition for (2) occurs at

Ωc = 2.

13



Capillary Rise

Variation of the parameter Ω in the DNS
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Capillary Rise

Guiding research question

Can we derive a generalization of Quere’s critical condition?

Ω =

√
128η2σ cos θ0

R5ρ3g 2
< 2

The parameter Ω does not involve the slip length! A dissipative process is missing in the model!
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Capillary Rise Extensions of the classical model: Dynamic contact angle

Capillary rise with dynamic contact angle effect

Dynamic contact angle model: The Molecular Kinetic Theory yields (as Ca→ 0)

σ (cos θ0 − cos θ) = ζVΓ (3)

with a friction coefficient ζ ≥ 0. This leads to a quadratic term for the contact line dissipation

σ

∫
Γ(t)

(cos θ − cos θ0)VΓ dl = −ζ
∫

Γ(t)

V 2
Γ dl ≤ 0.

The resulting model reads as (see Martic et al., Langmuir, 2002 [Mar+02])

2

R
σ cos θeq =

8η

R2
hḣ + ρ

d

dt
(hḣ) + ρgh +

2

R
ζḣ. (4)

⇒ Dissipation at the contact line is added to the classical model.

The new term ∝ ḣ has a different mathematical structure.

⇒ A second non-dimensional parameter is introduced into the problem.
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(hḣ) + ρgh +

2

R
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Capillary Rise Extensions of the classical model: Dynamic contact angle

Capillary rise with dynamic contact angle effect

Experimental data by Quéré [Qué97] (open circles) are well described.

Best fit for the friction: ζ = 80 mPa · s.

Regime transition is observed: (a) ζ = 80 mPa · s, (b) ζ = 0.

Question: What is the critical condition for this model?

Figure: Results for ethanol from (Martic et al.,2003).
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Capillary Rise A generalization of the critical condition

Critical condition for “Martic type” models

We study models of the general form

(HH ′)′ + ΩHH ′ + βH ′ + H = 1. (5)

The parameter β may originate from different physical mechanisms. For example, in Martic’s model, we have

β =
ζ√

σρR cos θ0

.

We show1 that the generalization of the critical condition reads as

Ω + β < 2. (6)

Hence, the oscillatory regime is shifted towards smaller values of Ω for positive β.

1This part is joint work with El Assad Ouro-Koura (B. Sc.). His Bachelor Thesis on the topic has the title “Zur mathematischen
Modellierung des kapillaren Anstiegs: Dissipative Mechanismen und nicht-lineare Oszillationen”, TU Darmstadt (2023).
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Capillary Rise A generalization of the critical condition

Comparison with experimental data (I)

Using the fit from Martic et al. for the data for ethanol by Quere, we have

β =
ζ√

σρR cos θ0

≈ 80 mPa · s
107 mPa · s ≈ 0.75, Ω ≈ 1.01.

We expect oscillations since Ω + β ≈ 1.8 < 2 (!).
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Capillary Rise A generalization of the critical condition

Comparison with experimental data (II)

In fact, the analytical theory gives more information than just the critical damping condition.

From a linearization of the problem, we obtain2

H(s)2 ≈ 1 + exp

(
−Ω + β

2
s

)
A cos(ωs + φ), (7)

where ω =
√

1− (Ω + β)2/4.

Note that the dimensionless time-period of oscillation

S =
2π√

1− (Ω + β)2/4
→∞ as Ω + β → 2

goes to infinity as the critical damping is approached. The exponential decay part will dominate in this
case.

In the present example, we have

S =
2π√

1− 1.82/4
≈ 14.4.

2For details, we refer to our upcoming preprint.
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Capillary Rise A generalization of the critical condition

Comparison with experimental data (III)

Idea: We can visualize the oscillatory part of the solution (7) by factoring out the exponential decay.
Hence, we plot the function

Ψ(s) := exp

(
Ω + β

2
s

)
(H(s)2 − 1).
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Indeed, the oscillation is confirmed from the experimental data.
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Capillary Rise A generalization of the critical condition

Comparison with experimental data (IV)

The model is also able to describe the strong oscillations of ether in [Qué97] quite well. In this case, the
system is far from critical damping.

Ω ≈ 0.19, β ≈ 0.15 ⇒ Ω + β ≈ 0.34 < 2.
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Summary and Outlook

Including dissipation near the contact line: The model by Gründing

D. Gründing: An enhanced model for the capillary rise problem (IJMF, 2020) [Grü20]

Major contribution: Modeling of viscous dissipation in the contact line vicinity.
⇒ Effect of the slip length on the dissipation can be modeled.

Known asymptotic solutions are used (∆2ψ = 0, stream function ψ).

Has the same mathematical structure like the model by Martic et al.
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Summary and Outlook

Summary and Outlook

Derivation of complexity-reduced (ODE) models guided by DNS.

Framework for ODE models: Variational formulation using different channels of dissipation
(to be modeled from DNS)3.

Mathematical analysis of ODE leads to new physical insights.

In Progress: Calibration of ODE models with DNS to make predictions beyond current DNS capabilities.

Long-term goal: Subgrid-scale models for the moving contact line?

(a) DNS. (b) Local flow.
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(c) ODE model.
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(d) Oscillation.

3Please check out our upcoming preprint for more details.
25



Summary and Outlook

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID
265191195 – SFB 1194.

The authors gratefully acknowledge the computing time provided to them on the high-performance
computer Lichtenberg at the NHR Centers NHR4CES at TU Darmstadt. This is funded by the Federal
Ministry of Education and Research, and the state governments participating on the basis of the resolutions
of the GWK for national high performance computing at universities (www.nhr-verein.de/unsere-partner).

26

https://www.nhr-verein.de/unsere-partner


Summary and Outlook

References I

[BC02] T.D Blake and J De Coninck. “The influence of solid–liquid interactions on dynamic wetting”. In:
Advances in Colloid and Interface Science 96.1-3 (Feb. 2002), pp. 21–36. doi:
10.1016/s0001-8686(01)00073-2.

[BH69] T.D Blake and J.M. Haynes. “Kinetics of liquid-liquid displacement”. In: Journal of Colloid and
Interface Science 30.3 (July 1969), pp. 421–423. issn: 00219797. doi:
10.1016/0021-9797(69)90411-1.

[Bos23] C. H. Bosanquet. “On the flow of liquids into capillary tubes”. In: The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 45.267 (Mar. 1923), pp. 525–531. issn:
1941-5982. doi: 10.1080/14786442308634144.
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