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Wetting of complex surfaces
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Capillary rise: A prototypical (dynamic) wetting process

A liquid column rises against gravity driven by capillarity.

Free energy functional (including some approximations):

E(h) = πR2σ + 2πRhσw +
π

2
ρgR2h2.

σw: specific energy due to wetting of the solid

Young equation for the equilibrium contact angle

σ cos θ0 + σw = 0.

Energy minimization yields Jurin’s equation

h0 = − 2σw

ρgR
=

2σ cos θ0

ρgR
.
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Dynamics of capillary rise

There are different regimes for the rise dynamics observed in experiments.

(Quéré, Europhys. Lett., 1997):
Monotone rise for ethanol, oscillatory rise for ether (low viscosity).

It is still very challenging to predict the dynamics.

(a) Ethanol (η = 1.17mPa · s). (b) Ether (η = 0.3mPa · s).

Figure: Experimental data by Quéré (1997). Capillary rise in a glass tube (R = 0.689mm).
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A hierarchy of models for dynamic wetting

Molecular dynamics: very accurate description of the local physics. Simulations are limited to short length
and time scales.

Continuum mechanics: capable of describing larger scales, small scale physics ”encoded” in boundary
conditions.

Simplified models: Phenomenological models or models derived from continuum mechanics using some
simplifying approximations.

(a) Molecular dynamics. (b) Continuum mechanics. (c) Simplified models.

Figure (c) taken from www.aps.org/publications/apsnews/200908/zerogravity.cfm.

6



Fitting parameters vs. predictive models

A spreading glycerol-water droplet is described fairly well by Cox-Voinov, i.e.

θ3
app − θ3

m = 9 Ca ln
(x
l

)
, (1)

for the (obviously unphysical) choice

ln
(x
l

)
≈ 75 ⇔ x

l
≈ 1032.5.
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Fundamentals Static Wetting

Static wetting and the Young equation

Goal: Determine the stationary shape of a wetting droplet on an ideal surface.

Some (technical) simplifications: 2D geometry, small contact angle (θ < 90◦).

Height function representation of the free surface

Σ = {(x , h(x)) : 0 ≤ h ≤ L}.

Potential energy functional:
E = σ|Σ|+ σw|W |+ Eg .

Liquid-Gas surface tension σ, specific wetting energy σw = σsl − σsg,
gravitational energy Eg .
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Fundamentals Static Wetting

Static wetting and the Young equation (II)

Energy functional E = E(L, h) (neglecting gravity for simplicity)

E(L, h) = σ

∫ L

0

√
1 + h′(x)2 dx + Lσw

has to be minimized over the configuration space

L ≥ 0, h ∈ C 2(0, L) with h ≥ 0, h(0) = h(L) = 0

subject to the volume conservation constraint∫ L

0

h(x)dx = V0.
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Fundamentals Static Wetting

Static wetting and the Young equation (III)

Non-dimensional form x̃ := x/L, h̃(x̃) := h(x̃L)/L, 0 ≤ x̃ ≤ 1
allows for an independent variation of L and h̃.

Minimize

E(L, h̃) = L

(
σ

∫ 1

0

√
1 + h̃′2 dx̃ + σw

)
over the configuration space

L ≥ 0, h̃ ∈ C 2(0, 1) with h̃ ≥ 0, h̃(0) = h̃(1) = 0

subject to ∫ 1

0

h̃dx̃ =
V0

L2
.
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Fundamentals Static Wetting

Static wetting and the Young equation (IV)

Introduce a Lagrange multiplier for the volume constraint:

E(L, h̃, λ) = L

(
σ

∫ 1

0

√
1 + h̃′2 dx̃ + σw

)
+ λ

(∫ 1

0

h̃ d x̃ − V0

L2

)
Configuration space:

L ≥ 0, h̃ ∈ C 2(0, 1) with h̃ ≥ 0, h̃(0) = h̃(1) = 0

Stationarity conditions:

0 =
∂E
∂L

and 0 =
∂

∂ε
E(L, h̃ + εϕ, λ)

∣∣∣
ε=0

for all smooth test functions ϕ ∈ C∞c (0, 1).
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Fundamentals Static Wetting

Static wetting and the Young equation (V)

Stationarity with respect to length L leads to

0 = σ

∫ 1

0

√
1 + h̃′2 dx̃ + σw +

2λσV0

L3
. (2)

Stationarity with respect to shape h̃ leads to (“Euler-Lagrange equation”):(
h̃′√

1 + h̃′2

)′
=

λ

Lσ
= const. (3)
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Fundamentals Static Wetting

Static wetting and the Young equation (VI)

Equation (3) shows that the shape is a spherical cap (curvature κ is constant).

Combining equation (2) and (3) leads to

0 =
σ

L
(|Σ|+ 2κV0) + σw.

With some elementary geometry (i.e. |Σ|+ 2κV0 = L cos θ), we arrive at the Young-Dupre equation

σ cos θ + σw = 0. (4)

For more details, see Chapter 1 of [Fri21].
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Fundamentals Static Wetting

Stationary shapes for structured surfaces

The variational approach can also be applied numerically for more complex cases.
We used Surface Evolver [BB12] to compute the (nearly critical) shape of a droplet on a chemically
structured surface [Har+21].
This allowed us to study the subsequent dynamic breakup process in great detail.
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Fundamentals Dynamic Wetting

The dynamics of wetting and the Huh-Scriven paradox

The no slip boundary condition at the solid is incompatible with a moving contact line
[HS71].
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Fundamentals Dynamic Wetting

Continuum mechanical modeling framework

We apply the sharp interface two-phase Navier Stokes equations (see lecture by Dieter Bothe) for
Newtonian fluids under isothermal conditions.

ρ
Dv

Dt
− η∆v +∇p = b, ∇ · v = 0, in Ω \ Σ(t),

JvK = 0, Jp1− SK nΣ = σκnΣ, on Σ(t),

v⊥ = 0 on ∂Ω,

VΣ = v · nΣ on Σ(t).

(5)

Viscous stress tensor: S = η(∇v +∇vT)

Goal: Derive boundary conditions to model
(1) The wettability of the solid and
(2) the mobility of the contact line (i.e. the tangential velocity v‖ at the solid boundary).
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Fundamentals Dynamic Wetting

Dissipative mechanisms in wetting

We define the free energy functional

E(t) :=

∫
Ω\Σ(t)

ρv 2

2
dV +

∫
Σ(t)

σ dA +

∫
W (t)

σw dA.

We compute the rate of change Ė for a solution of (5) (for b = 0)

dE

dt
= −2

∫
Ω\Σ(t)

ηD : D dV +

∫
∂Ω

v‖ · (Sn∂Ω)‖ dA + σ

∫
Γ(t)

(cos θ − cos θ0)VΓ dl . (6)

For details of the proof of (6), see [Fri21] (Appendix A).

Closure relations are required to satisfy the second law of thermodynamics Ė ≤ 0.
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Fundamentals Dynamic Wetting

The Navier Slip condition

The Navier Slip Condition: A linear closure relation for
∫
∂Ω

v‖ · (Sn∂Ω)‖ dA reads as

−λv‖ = (Sn∂Ω)‖ ⇔ −v‖ = 2
η

λ
(Dn∂Ω)‖, (7)

where λ ≥ 0 is a constant (friction coefficient).

The parameter L := η/λ is called the “Navier slip length”.

The slip length controls the amount of tangential slip at a
given shear rate.

Finite slip (i.e. L > 0) (partially) regularizes the Huh Scriven
singularity [HM77].

A logarithmic singularity for the pressure and the curvature at
the moving contact line remains (provided that L <∞).

The total dissipation rate is finite.

Note: L is expected to be on the nanometer scale (→ high
computational costs!).
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Fundamentals Dynamic Wetting

Contact line dissipation and contact angle models

To complete the mathematical model, we need another constitutive equation which makes sure that

σ

∫
Γ(t)

(cos θ − cos θ0)VΓ dl ≤ 0.

VΓ: normal speed of the contact line (positive for advancing contact line,
negative for receding contact line).

Linear closure relation (see Molecular Kinetic Theory of Wetting [BH69; Bla06])

ζVΓ = σ(cos θ0 − cos θ).

More generally:
θ = f (VΓ)

where f satisfies the inequality
VΓ(f (VΓ)− θ0) ≥ 0.
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Fundamentals Dynamic Wetting

Summary: “Standard Model” for Moving Contact Lines

The “standard model”1 based on the Navier slip condition reads as

ρ
Dv

Dt
− η∆v +∇p = b, ∇ · v = 0, in Ω \ Σ(t),

JvK = 0, Jp1− SK nΣ = σκnΣ, on Σ(t),

v⊥ = 0, λv‖ + (Sn∂Ω)‖ = 0, on ∂Ω,

VΣ = v · nΣ, on Σ(t),

VΓ = v · nΓ, θ = f (VΓ), on Γ(t),

(8)

where we require that
η ≥ 0, σ ≥ 0, λ ≥ 0, VΓ(f (VΓ)− θ0) ≥ 0.

1Note: The mathematical model (8) is one of the most commonly applied models for dynamic wetting in the literature. However, there
are many more modeling approaches which aim at a regularization of the singularity and a prediction of the dynamics of wetting. For a
survey of the field, we refer to the references [GBQ04; Bla06; Shi08; Bon+09; SA13; MC22]
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Direct Numerical Simulations
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Direct Numerical Simulations

A numerical benchmark for dynamic wetting simulations

Gründing et al.: A comparative study of transient capillary rise using direct numerical simulations [Grü+20a]
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Direct Numerical Simulations

A numerical benchmark for dynamic wetting simulations

Observation: There is a lack of accurate reference solutions.

Goal: Establish a numerical benchmark for an instationary
dynamic wetting problem.

Mathematical model: Sharp interface two-phase Navier
Stokes equations (8) with fixed contact angle and constant slip
length.

We provide an extensive dataset [Grü+20b] validated with
four different numerical methods

OpenFoam ALE Interface Tracking
Geometrical Volume-of-Fluid (FS3D)
Algebraic Volume-of-Fluid InterFoam
Extended discontinuous Galerkin (BoSSS)

Recent validation with IsoAdvector: Check out our recent
preprint arXiv:2302.02629.
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Direct Numerical Simulations

ALE Interface Tracking method

We use the Arbitrary-Lagrangian-Eulerian Interface Tracking method
in OpenFoama originally developed by Željko Tuković and extended for
dynamic wetting by Dirk Gründing [Grü20a].

Free surface formulation
(extension to two-phase flow ongoing, joint work with
S. Raju, T. Maric, Z. Tuković).

A diffusion equation is solved for the mesh velocity in the bulk to
maintain a good mesh quality.

The contact angle is prescribed during the advection step using the
control point algorithm [TJ12].

Extension to “free contact angle” evolution ongoing (joint work with S.
Raju, T. Maric, Z. Tuković).
⇒ Prerequisite for force-based wetting models.

aSee lecture notes by Željko Tuković for details.
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Direct Numerical Simulations

No slip vs. Navier slip

The Navier slip condition is used to regularize the moving contact line singularity

−λv‖ = 2η(Dn∂Ω)‖ at ∂Ω. (9)

Note: The slip length L = η/λ must be resolved by the mesh.
⇒ 3D simulations with a physical slip length L ≈ 1 . . . 10 nm are infeasible!
We used a very large slip length (1/50 ≤ L/R ≤ 1/5) to obtain mesh converged solutions for numerical
verification!

(a) Numerical slip. (b) Resolved Navier slip.
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Direct Numerical Simulations

Influence of the slip length

Finding: The slip length may change the character of the rise dynamics.
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Direct Numerical Simulations

The classical model by Bosanquet

Classical model due to Bosanquet (1923):

2πRσ cos θ0 = 8πηhḣ +
d

dt
(πR2hρḣ) + πR2hρg . (10)

”Capillary force = Viscous resistance + inertia + gravity”

Simplifying assumptions: Flat interface Σ (to compute M), Poiseuille
flow profile (with no slip condition).

Volume:V = πR2h, Mass:M = ρV ,

Momentum:P = Mḣ.

Details of the flow near the contact line are not considered. →
Dissipation close to the contact line and at the contact line are neglected!
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Direct Numerical Simulations

Non-dimensional form

Using the length and time scales

h0 =
2σ cos θ0

ρgR
and tref =

√
h0/g

in (10), one arrives at the non-dimensional form

1 = (HH ′)′ + ΩHH ′ + H. (11)

Here H(τ) = h(τ tref)/h0 is the dimensionless rise height. The dimensionless group

Ω =

√
128η2σ cos θ0

R5ρ3g 2
=
√

128 cos θ0
Oh

Bo
.

governs the behaviour of solutions of the ODE model (10).

Quéré showed that a regime transition for (11) occurs at

Ωc = 2.
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Direct Numerical Simulations

Variation of the parameter Ω in the DNS
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Capillary Rise
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Capillary Rise

Guiding research question

Can we derive a generalization of Quere’s critical condition?

Ω =

√
128η2σ cos θ0

R5ρ3g 2
< 2

The parameter Ω does not involve the friction λ (hence the slip length)!
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Capillary Rise Extensions of the classical model: Dynamic contact angle

Capillary rise with dynamic contact angle effect

Dynamic contact angle model: The Molecular Kinetic Theory yields (as Ca→ 0)

σ (cos θ0 − cos θ) = ζVΓ (12)

with a friction coefficient ζ ≥ 0. This leads to a quadratic form for the dissipation

σ

∫
Γ(t)

(cos θ − cos θ0)VΓ dl = −ζ
∫

Γ(t)

V 2
Γ dl ≤ 0.

The resulting model reads as (see Martic et al., Langmuir, 2002 [Mar+02])

2

R
σ cos θeq =

8η

R2
hḣ + ρ

d

dt
(hḣ) + ρgh +

2

R
ζḣ. (13)

⇒ Dissipation at the contact line is added to the classical model.

The new term ∝ ḣ has a different mathematical structure.

⇒ A second non-dimensional parameter is introduced into the problem.
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Capillary Rise Extensions of the classical model: Dynamic contact angle

Capillary rise with dynamic contact angle effect

Experimental data by Quéré [Qué97] (open circles) are well described.

Best fit for the friction: ζ = 80 mPa · s.

Regime transition is observed: (a) ζ = 80 mPa · s, (b) ζ = 0.

Figure: Results for ethanol from (Martic et al.,2003).
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Capillary Rise A generalization of the critical condition

Critical condition for “Martic type” models

We study models of the general form

(HH ′)′ + ΩHH ′ + βH ′ + H = 1. (14)

The parameter β may originate from different physical mechanisms. For example, in Martic’s model, we have

β =
ζ√

σρR cos θ0

.

We show2 that the generalization of the critical condition reads as

Ω + β < 2. (15)

Hence, the oscillatory regime is shifted towards smaller values of Ω for positive β.

2This part is joint work with El Assad Ouro-Koura (B. Sc.). His Bachelor Thesis on the topic has the title “Zur mathematischen
Modellierung des kapillaren Anstiegs: Dissipative Mechanismen und nicht-lineare Oszillationen”, TU Darmstadt (2023).
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Capillary Rise A generalization of the critical condition

Comparison with experimental data (I)

Using the fit from Martic et al. for the data for ethanol by Quere, we have

β =
ζ√

σρR cos θ0

≈ 80 mPa · s
107 mPa · s ≈ 0.75, Ω ≈ 1.01.

We expect oscillations since Ω + β ≈ 1.8 < 2 (!).
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Capillary Rise A generalization of the critical condition

Comparison with experimental data (II)

In fact, the analytical theory gives more information than just the critical damping.

From a linearization of the problem, we obtain3

H(s)2 ≈ 1 + A exp

(
−Ω + β

2
s

)
cos(ωs + φ), (16)

where ω =
√

1− (Ω + β)2/4.

Note that the dimensionless time-period of oscillation

S =
2π√

1− (Ω + β)2/4
→∞ as Ω + β → 2

goes to infinity as the critical damping is approached. The exponential decay part will dominate in this
case.

In the present example, we have

S =
2π√

1− 1.82/4
≈ 14.4.

3For more details, please take a look at our publication [Fri+23].
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Capillary Rise A generalization of the critical condition

Comparison with experimental data (III)

Idea: We can visualize the oscillatory part of the solution (16) by factoring out the exponential decay. I.e.
we plot the function

Ψ(s) := exp

(
Ω + β

2
s

)
(H(s)2 − 1).
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Indeed, the oscillation is confirmed from the experimental data.
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Capillary Rise A generalization of the critical condition

Comparison with experimental data (IV)

The model is also able to describe the strong oscillations of ether in [Qué97] quite well. In this case, the
system is far from critical damping.

Ω ≈ 0.19, β ≈ 0.15 ⇒ Ω + β ≈ 0.34 < 2.
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Capillary Rise Extensions of the classical model: Navier slip

Including dissipation near the contact line: The model by Gründing

D. Gründing: An enhanced model for the capillary rise problem, International Journal of Multiphase Flow
(2020) [Grü20b]

Major contribution: Modeling of viscous dissipation in the contact line vicinity.
⇒ Effect of the slip length on the dissipation can be modeled.

Known asymptotic solutions are used (∆2ψ = 0, stream function ψ).
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Capillary Rise Extensions of the classical model: Navier slip

Including dissipation near the contact line: The model by Gründing

The model in two spatial dimensions reads as (for L = η/λ� R)

ρ
d

dt
(hḣ) = − 3η

R2
ḣh− ηh̄

RL
ḣ +

σ cos θ0

R
− ρgh +

6

5
ρḣ2. (17)

Wedge dissipation term ∝ −ḣ/L. ⇒ Formal equivalence to Martic’s model
(up to some minor details).

Observation: Ill-posedness of the original continuum problem as L→ 0 is recovered.

Results about critical condition in Martic’s model carry over.

A fundamental question

How to distinguish the models? Are the models predictive?
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(hḣ) = − 3η

R2
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Kinematics
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Kinematics of moving contact lines in a nutshell

Assume that we are provided with

a (sufficiently regular) velocity field v = v(t, x) satisfying

v⊥ = 0 at ∂Ω

and an initial interface Σ(t0) ⊂ Rn.

Then, we can uniquely solve for the evolution of the moving
interface Σ(t) using the characteristic equation

ẋ(t; t0, x0) = v(t, x(t; t0, x0),

x(t0; t0, x0) = x0.
(18)
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Contact angle evolution equation

Important consequence: The velocity field alone determines (by kinematics!) the evolution of the contact
angle, provided that it is sufficiently regular and tangential to the solid boundary.

In fact, we prove that (co-moving) time-derivative of the contact angle is given as

Dθ

Dt
= (∂τv) · nΣ. (19)

Finding: The “standard model” (8) is inconsistent regarding the contact angle kinematics. ⇒ Only (at
least weakly) singular solutions are possible.

For more details, see our publications [FKB19] and [FMB20; FKB18; Fri21].
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Contact line advection schemes

Goal: Develop an interface advection scheme that is able to solve the advection problem (ϕ : phase
indicator or level set)

∂tϕ+ v · ∇ϕ = 0, t > 0, x ∈ Ω,

ϕ(0, x) = ϕ0(x), x ∈ Ω
(20)

without prescribing a contact angle (provided that v⊥ = 0 at ∂Ω).

Key ingredient: Second-order accurate interface reconstruction at the boundary, see our publications
[FMB20] for GeoVOF and [FMB19] for Level Set.
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(a) Boundary Youngs [FMB20].
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(b) Boundary ELVIRA [FMB20].
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Application: Generalized Navier Slip Condition (GNBC)

Application: We implement the Generalized Navier Slip
condition [QWS03; QWS06] in the Geometrical
Volume-of-Fluid solver Basilisk.

The contact angle is transported kinematically and an
out-of-balance Young stress enters the velocity boundary
condition

λv‖ + (Sn∂Ω)‖ = σ(cos θ0 − cos θ)nΓfε(x).

Note: The contact angle is not prescribed, but an outcome of
a local balance of forces!

This is joint work with Y. Kulkarni, T. Fullana and S. Zaleski
(Sorbonne University).
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Regularization of the curvature singularity

A mesh convergent curvature at the moving contact line is found with the new GNBC implementation
using the kinematic contact angle transport.

(a) GNBC. (b) Navier Slip.
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Summary and Outlook

Derivation of complexity-reduced (ODE) models guided by DNS.

Framework for ODE models: Variational formulation using different
channels of dissipation (to be modeled from DNS)4.

Mathematical analysis of ODE leads to new physical insights.

Work in progress: Calibration of ODE models with DNS to make predictions beyond current DNS
capabilities.

Long-term goal: Subgrid-scale models for the moving contact line?

(a) DNS. (b) Local flow.
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(c) ODE model.
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(d) Oscillation.

4Please check out our publication [Fri+23] for more details.
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